
1

 Track down
your CICS

program bugs with

TRACK

2

TRACK provides on-line testing and debugging capabilities in CICS
environments. It increases CICS reliability and improves productivity by
enabling application programmers to detect and correct multiple errors in
a single debugging session.

TRACK provides

Year 2000 Testing

TRACK accepts a future run date (i.e. 2000/01/01) for an individual
debug session. This allows testing selected programs WITHOUT
affecting other transactions and programs, WITHOUT requiring an
LPAR or an IPL, and WITHOUT affecting the rest of the CICS region.

Faster Debugging

TRACK provides faster debugging of program logic, coding, and data
errors. It provides for user halts at the transaction level or in any
subroutine and halt of program execution at programmer defined halt
points which are activated only when certain conditions are encountered.
Data can be displayed by COBOL dataname. Debugging of tasks
executing at another terminal or printer or unattached to any terminal can
be done. Loops can be trapped by setting instruction and CICS call
limits.

Faster Corrections

TRACK allows single stepping through a program to follow the program
logic. This can be done by either single machine instruction or by
program statement. It also pinpoints errors for you on the screen.
COBOL, PL/1 and Assembler source can then be displayed as well as
data files. Corrections are made interactively and execution of the
program then continues. Program flow after a halt can be redirected to
test infrequently used logic paths.

Faster Turn Around

Multiple errors can be examined and resolved in one execution of the
program. No more waiting to resubmit the program for additional
compiles, doing more testing, and looking at more dumps.

Reduced Dump Analysis

It is no longer necessary to plow through core dumps. TRACK points
out exactly what you need to know on the screen. It takes the drudgery
out of debugging and testing.

3

Stable CICS Environment

TRACK can also be used to monitor any specific program running under
CICS. It detects program abends or illegal CICS operations. TRACK
protects CICS from transactions causing table storage violations, thus
preventing CICS crashes. TRACK uncovers those intermittent, hard to
find bugs, in both a testing and production environment.

Security

A powerful security feature enables the system administrator to control
both who may use the TRACK system and which facilities are available
to each individual. An audit trail of all alterations made using TRACK
can be obtained.

Benefits you will see

n Improved programmer productivity from CICS test sessions

n Reduced development times

n Reduced requirement for tedious dump analysis

n Ability to test infrequently used logic paths to identify and
correct obscure program errors

n Better tested and more resilient programs

n Improved CICS system stability

Easy to use

TRACK is extremely easy to use. It is a menu and PF key driven
system with on-line help screens. All facilities are accessible from clear
informative menus, by use of commands or via ‘fastpath’ identifiers. The
interactive screens that highlight error conditions are easy to understand.

TRACK is used by application programmers to locate logic errors,
coding errors, and data errors in programs.

TRACK is used by the system programmer to locate conditions that
cause CICS crashes, including invalid modification of CICS tables.

TRACK is an outstanding learning aid for junior programmers. They can
easily follow program logic, learn CICS conventions and standards, and
get around the problems always encountered by new programmers.

4

Menus and Fastpaths

Menu screens giving access to all the main facilities of TRACK are
available throughout the system. They provide an indication of the
functions available and allow easy use of them. The following example
of the highest level menu shows how they work.

Command is the command input field into which may be typed any
valid TRACK command. When used at a menu, the option selected may
be entered here. You may also enter a ‘fastpath’ id here at any time to
take you directly to a particular menu or function screen.

On menus you may select an option by typing its identifier in the
command field. Alternatively, you may position the cursor at the required
line and press the ZOOM PF key. The values shown in brackets to the
right of each option are the fastpath identifiers associated with each
activity. They may be used at this or any other screen for direct access to
a facility.

For example, to select the Monitor Controls function you could supply
either the option value ‘=8’ or if you know the screen you want, you
could be more specific (=8.2, for instance). Alternatively, you could
position the cursor anywhere on the line containing option 8 and press
the ZOOM PF key.

Offset allows you to input a value to modify the effect of certain com-
mands. For example, if an area of storage is to be displayed, the entered
value determines the offset within the area at which the display will
begin.

Password is the field where any password required by the system for the
function being performed must be supplied.

At the top of the screen are
three fields seen throughout

the system, Command,
Offset, and Password.

You may obtain help
information relating to a
topic by position-ing the

cursor at the required option
and pressing the HELP key.

5

Standard Halt Points

TRACK will halt a monitored program’s execution at user-specified
locations. When the intercept occurs, a halt screen is displayed, including
the relevant source code if available. All TRACK debugging facilities
are then available for the examination and alteration of data (in storage,
temporary storage, or on file) and of program machine code. In this way
errors may be found and corrected or changes made to ensure execution
of particular sections of code. After each halt the programmer may
terminate the transaction, produce a dump, continue execution normally,
STEP through the program by statement or instruction, or continue from
a different point in the program.

Standard halt points can be set by specifying one of the following:

1) START which indicates to halt at program entry point,

2) a particular program statement which causes a halt
immediately before the statement is executed, and

3) a 1 to 6 character even hexadecimal offset (whose value
must not exceed the size of the program or module specified).

Display/Debug Facility

Halt points may be specified for a program to enable controlled
interruption of program execution so the contents of program variables,
etc. may be examined. The reason for the interruption is given including
the name of the program interrupted, the reason for the interruption, the
offset in the program at which the interruption occurred, the machine
instruction at the interrupt point, and the values of the program registers.
Whenever a halt point is reached the resulting screen highlights the
statement for which the halt occurred.

6

The Monitor Control screen
is completed by entering

NWSP07 in Program Name
and START in Halt Offset.

This directs TRACK to
monitor program NWSP07
and halt at program start.

To simulate execution on
January 1st, 2000, the run date

is set to 2000/01/01. Program
requests for CURRENT-DATE

or EIBDATE will return this
date. Date Access Action of

HALT causes Track to
automatically halt each time a

system date is accessed.

To also set a halt each
time statement 921 is reached,

enter S921 in Halt Offset.

7

In this case PF4 (STEP)
was pressed and execution of
program NWSP07 halts prior
to the next statement (711) to be
executed.

When entering program
NWSP07 this screen is
displayed with the first
executable statement
highlighted since a halt was set
at program START.

If you press PF12,
program execution of NWSP07
continues until it encounters the
halt set for statement 921.
Statement 921 is then displayed
in context with statement 921
highlighted.

8

Control Debugging and Execution using line commands

A debug session is made easy using LINE commands. You can control
where execution of a program is halted, specify special halt conditions,
and even alter the logic flow of the program using LINE commands. All
of this can be done while viewing the source code of the program.

Halt points can be set in many ways, but the most convenient way is
while viewing a module’s source code. You can move around in the
program’s source by paging forward and backward, FINDing a string of
characters, or going directly to a statement number.

The source of your program is displayed on your request using TRACK
menu screens. It is also displayed during a debug session on a STOP
screen. The above example shows a typical screen that was displayed
due to a halt. It illustrates the setting and resetting of additional halt
points.

Please note that at any halt point all TRACK debugging facilities are
available. After each halt the programmer may terminate the transaction,
produce a dump, continue execution normally, STEP through the program
by statement or instruction, or continue from a different point in the
program.

Besides PF key functions the programmer has available several keyable
fields to control testing.

To set a Halt, key ‘H’ in the
statement number and press Enter.

To Reset (turn a halt
point off), key ‘R’ in
the statement number.

Once the statement you want is
located, simply move the cursor

to anywhere in the statement
number, key ‘H’ and press Enter.

The halt point is set and when
this statement is encountered

during execution TRACK will
halt the execution and produce a

STOP Display screen.

In the same way, you can turn a
Halt off. You find the statement,
key ‘R’ (Reset) in the statement

number, and press Enter.

9

For instance, to halt at statement 921 only when field WS-RESP is not
equal to 13, enter the following:

Each time program execution
passed through statement
number 921(Halt Offset —>
S921), the contents of
WS-RESP would be compared
with a two-byte character value
of 13. If they were not equal, a
halt would occur.

Here, execution stops at
statement 921 when
WS-RESP is not equal
to 13.

Execution was halted at
statement 1697 when a system
date was accessed. This was set
via Date Access Action in option
8.2.

The Display/Debug facility provides access to all CICS and user tables, to
program storage, and when used interactively to all areas associated with
an active task. Modification to such areas can be made to correct errors.

10

Show and Modify Storage Areas
within your Program by simply entering the field’s dataname.

The leftmost column displays the address relative to the data field
displayed. The rightmost column shows the virtual storage address. The
data in the middle of the display is the usual hexadecimal and character
display of data for the field requested. In this case the data field CA-
AREA is an 01 level field, so all data for the group is displayed.

In this example EIBCALEN has
both its hex and decimal value

displayed (01F4 and 500). It can
be changed by keying over either
one of the representations. When
program execution is continued,

processing will continue based on
the new value.

When a program is halted prior to executing a statement the values of
the variable names in the statement are displayed in a window.

If the command field contained
a field name such as CA-AREA,

then the display would show the
address and storage value for
CA-AREA as displayed here.

11

There are other methods to change a data field’s values.

In this example, the cursor was
placed on WS-MAPNAME
(line 1827) and PF9 was
pressed. WS-MAPNAME can
be altered (in either hex or
character format) with this
window.

On any TRACK display enter
D and a data field’s name in the
command, NWSM07-OPT in
this case.

12

Any part of the displayed
storage may be modified,
by positioning the cursor

at the desired location
in either the hex or

character representation of
the area, overtyping the

existing value with the
required one, and pressing

the ENTER key.

To change P07 to P77 either
overtype the number 0 and

change to 7, or hexidecimal F0
and change to F7.

This screen would display.

13

Certain areas owned and maintained by CICS itself may be viewed and,
in some cases, altered. To see the contents of the EIB, for example, we
could have entered EIB on the command line.

The contents of such areas as the CSA, TCA, CWA, TWA, TCTTE,
TUA, and others may be examined in a similar manner.

If EIB was entered in
the command field of the
previous halt screen and Enter
pressed, we could display the
contents of the user’s Exec
Interface Block as shown here.

14

Extended Halt Points

Extended halt points are similar to standard halts, but when setting
extended halt points the user may specify that the halt is only to take
effect if certain conditions are met. For example, a halt could be
requested to take place at program statement number 999 when data field
WKTERM is equal to T05A. It is possible to make the halt point even
more selective by also specifying:

a limit to the number of times it will be honored;

how many passes through the halt point must occur, with any
condition met, before the halt takes effect;

how many passes through the halt point must occur, with any
condition met, between halts;

any of the relation identifiers, equals, not equals, greater than,
greater than or equal, less than, less than or equal can be used.

Alteration of Program Flow

If the programmer decides to continue execution of the program, the
continuation can be made at a point other that at which the program was
last halted. The user’s display, if saved, may or may not be restored
depending upon the continuation option selected. When the program is
terminated, a dump may or may not be requested as the programmer
wishes.

15

Files and Temporary Storage Management

Track offers on-line access to all CICS files which may be browsed,
updated, added to, or deleted from. Temporary storage queues may
also be created, updated, or deleted. These facilities are available
regardless of whether you are using TRACK to test a program.

Here is an example of a display
of file ‘MSXGCF$’.

This is a sample of a Temporary
Storage Queue display for
queue QEDBT08G.

16

Security

Access to all TRACK facilities may be restricted using the system’s own
internal security. User profiles may be defined to limit the functions
available to individuals and resource profiles can be set up to protect
files and temporary storage queues. Details of all changes made by
TRACK users to programs, storage areas, files, and temporary storage
are written to the transient data destination CSSL.

System Testing

When programs are submitted for integration testing, errors can arise
due to the interaction of programs with each other. The problems that
occur at this stage of testing are often difficult to debug and can cause
CICS to crash. By using TRACK to monitor all tasks activated during
such system testing, problems can also be investigated and corrected
interactively, again allowing the testing process to proceed further than it
otherwise would and potentially improving the CICS system availability.

Initial Production Running

Even the most exhaustive testing may not eliminate all errors in a new
application system. Thus when a new application is introduced in the
production CICS system, the TRACK system can be used to protect the
integrity of the system by monitoring the new and/or changed programs
for a period of time.

Separate Terminal Debugging

Debugging activity can be specified to occur at a separate terminal other
than the one at which the monitored program is being executed. This
facilitates the centralized control of errors in a production system and
enables the debugging of programs which are executed at non-3270 type
terminals. In this way transactions which are not terminal-attached can
also be monitored.

17

Supported Environments

VSE: all releases
MVS: all releases
CICS: 1.7-4.1
Languages: Cobol, Cobol II, COBOL LE/370, PL/1, Assembler

Free Trial

TRACK is easy to install and use. There are no modifications to CICS
required, except the standard table entries. TRACK appears to the
system as a task under CICS.

Try TRACK in your own installation for 30 days FREE. Find out first
hand the many benefits of TRACK that other users throughout the U.S.
and Europe have already realized.

TRACK is a proprietary product of BITS Software, Ltd., of England.
MacKinney Systems is a marketing agent for BITS Software and handles
sales and technical support.

